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Periodic nets are commonly used to represent the topology of crystal structures.

Non-crystallographic (NC) nets are p-periodic nets whose automorphism groups

are not isomorphic to any isometry group in the Euclidean space. This work

deals with the special class of NC nets possessing non-trivial finite blocks of

imprimitivity for bounded automorphisms. It is shown that periodic, barycentric

representations of NC nets with this property display vertex collisions, every

block being represented as a single point. As a consequence, the labelled

quotient graph of these nets shows an equitable partition that also respects the

voltages over the edges, introduced as an equivoltage partition. Possible motions

within linked blocks of imprimitivity are characterized as correlation groups.

Some non-trivial examples of NC nets that have bounded automorphism groups

with and without fixed points are explored from the viewpoint of equivoltage

partitions and correlation groups, and a general algorithm is proposed to this

end. It is shown that the group of bounded automorphisms of these nets can be

described using wreath products of finite permutation groups by translation

groups.

1. Introduction

Non-crystallographic (NC) nets are periodic nets whose

automorphism group is not isomorphic to any isometry group

in the Euclidean space (Moreira de Oliveira Jr & Eon, 2011).

Freedom degrees associated to non-rigid motions in a

geometric realisation of NC nets may be specific of a wide

variety of periodic nets that have not yet been explored. In this

paper, we are mainly concerned with the automorphisms that

do not respect the periodicity of the net, in contrast with such

deformation theories as that formulated by Borcea & Streinu

(2010). For most NC nets, the complexity of the automorphism

(symmetry) group resulting from such freedom degrees

requires the introduction of new mathematical tools. Consider

for instance the infinite 1-periodic graph of Fig. 1. The auto-

morphism ðB1;C1Þ acts locally on the two vertices B1 and C1

while fixing all other vertices of the graph, but we may take as

an automorphism of this graph any combination of exchanges

�I ¼
Q

i2IðBi;CiÞ, where I is any finite or infinite subset of

integers. As a result, the automorphism group of this graph is

uncountable and certainly not finitely generated. We will show

that such automorphism groups are naturally embedded in the

wreath product of a finite permutation group by a translation

group.

Because NC nets do not display a unique maximal trans-

lation subgroup, as already pointed out by Chung et al. (1984),

the concept of translation is substituted by that of bounded

(local) automorphism (Eon, 2005). It is generally sufficient to

analyse the normal subgroup of bounded automorphisms to

characterize an NC net. A special class of NC nets with freely

acting (i.e. with no fixed vertices) bounded automorphisms

was analysed in the above-mentioned paper (Moreira de

Oliveira Jr & Eon, 2011). We show here that the main results

of the latter paper can be extended to periodic nets with a

system of finite blocks of imprimitivity (i.e. a partition of the

vertex set into finite subsets that is stable under the action of

bounded automorphisms). It is shown in particular that peri-

odic, barycentric representations of NC nets with a non-trivial

system of finite blocks of imprimitivity for bounded auto-

morphisms display vertex collisions, every cell of the partition,

or block, being represented as a single point. As a conse-

quence, it is possible to find an equitable partition of the

labelled quotient graph of the net which is consistent with the

voltages over its edges. These observations lead to the intro-

duction of the concepts of equivoltage partitions and correla-

tion groups, from which the structure of the group of bounded
Figure 1
A 1-periodic graph with an uncountable automorphism group.
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automorphisms can be recovered directly from the labelled

quotient graph, with no need to analyse automorphisms in the

net.

A more detailed overview of the methodology is presented

in x2. Some basic concepts from graph theory are briefly

reviewed in x3. The group-theoretic notion of imprimitivity in

periodic nets is studied in x4. Linear representations of peri-

odic nets are analysed in x5 and the main results concerning

barycentric representations of NC nets are exposed in x6.

Equivoltage partitions are introduced in x7 and correlation

groups in x8. Various examples of NC nets admitting a system

of imprimitivity for bounded automorphisms are described in

x7 and analysed in x8 from the point of view of their labelled

quotient graphs. An algorithm for analysing the group of

bounded automorphisms of such periodic nets from an arbi-

trary labelled quotient graph is described in x9 and applied to

three orthorhombic sphere packings with collisions in x10.

2. An overview

Our analysis follows from the observation that periodic,

barycentric representations of some non-crystallographic nets

display collisions between vertices that are equivalent under a

special class of automorphisms. More exactly, vertices segre-

gate into periodic colliding subsets called blocks, which are

stable under the action of bounded automorphisms. For

instance, vertices Bi and Ci collide for all i in a periodic,

barycentric representation of the periodic graph shown in

Fig. 1. These vertices are equivalent under the class of auto-

morphisms �I described above, giving rise to a partition into

finite blocks �i ¼ fBi;Cig which is stable under the action of

the family of �I. Such blocks are also called blocks of impri-

mitivity in group theory, which motivates our short introduc-

tion to related concepts in x4. However, systems of

imprimitivity are generally defined in transitive spaces, which

is not the normal case for periodic nets. We thus follow the

general group-theoretic definitions and then extend the

concept to spaces with a finite number of orbits.

Systematic vertex collisions within blocks for periodic,

barycentric representations of NC nets have striking implica-

tions. Consider again the graph in Fig. 1. If T is a maximal

translation group, any conjugate group �IT��1
I is again a

maximal translation group and defines another periodic

structure for this graph. But, given a geometric lattice in

Euclidian space, all corresponding periodic, barycentric

representations of this graph overlap whatever its periodic

structure. In other words, and generalizing the observation to

other periodic nets, any bounded automorphism of an NC net

appears to act as a translation on a periodic, barycentric

representation. To understand these properties, we widen the

notion of barycentric representation, analysing also bounded

and line-bounded barycentric representations. Applying these

concepts, we achieve the first result of the paper, showing that

periodic nets which have automorphisms that stabilize finite

blocks of imprimitivity will indeed display vertex collisions in

periodic, barycentric representations.

In the second part of the paper, we draw the consequences

of this result with respect to the structure of the labelled

quotient graphs of such NC nets. We show that to a system of

imprimitivity in the periodic net there corresponds an equi-

table partition of the vertices in the quotient. By properly

setting the origin in every vertex lattice, this partition can also

be made to respect the edge voltages (label vectors). It is then

possible to take the respective quotient by the partition: the

new labelled quotient graph turns out to correspond to the

periodic graph associated to the barycentric representation of

the NC net. Analysis of the relations between the two labelled

quotient graphs enables the study of those automorphisms

that stabilize finite blocks of imprimitivity. That is: one may get

precise information concerning the group structure of these

automorphisms in the NC net directly from its finite labelled

quotient graphs. A few examples are treated to show the

applicability of the method.

We emphasize that the whole analysis can be performed on

the labelled quotient graph of the net. Even the first step, i.e.

the characterization of blocks of imprimitivity, which proceeds

through the determination of vertex collisions in a periodic,

barycentric representation of the net, does not demand the

construction of the net. This step only requires writing down

and inverting the matrix whose entries are the coefficients of

cycles and cocycles of the quotient graph expressed as linear

combinations of the (oriented) edges of this graph; this inverse

matrix should then be right-multiplied by a matrix giving the

vector labels (voltages) over the corresponding cycles and

cocycles. The method was extensively discussed in Eon (2011)

and may be routinely performed on a computer.

3. Basic concepts

A graph G ¼ ðV; E; iÞ is defined on two disjoint sets V ¼ VðGÞ

and E ¼ EðGÞ, called the vertex and edge sets of G when an

incidence mapping i : E�!P is given from the edge set E to

the set P of 2-element subsets (unordered pairs) of V. The

notation e ¼ AB is used for iðeÞ ¼ fA;Bg; e is incident to A

and B, also called the end vertices of e, and these two vertices

are said to be adjacent. Two edges are adjacent if they are

incident to a common vertex. Vertices or edges that are not

adjacent are also called independent. The degree of a vertex A,

denoted by degðAÞ, is the number of edges incident at A. (We

shall not be concerned with the degree of vertices with loops in

this work.) A graph is locally finite if all vertices have finite

degree and regular if all its vertices have same degree. An

element of the union set V [ E will be called an element of G.

A subgraph of G is a graph whose vertex and edge sets are

subsets of V and E, such that the incidence mapping is a

restriction of i. An important subgraph in a graph G is the star

centred at a vertex A 2 G, defined as the subgraph containing

A, all the adjacent vertices together with the edges incident at

A. The subgraph induced by a subset V0 � V is the subgraph of

G containing V0 and all the edges in E with both end vertices in

V
0. The subgraph induced by a subset E0 � E is the subgraph of

G containing E0 and all the end vertices of edges in E0.
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A path p ¼ UV between vertices U and V in a graph G is

a subgraph such that U and V have degree one and all

remaining vertices have degree two. The length of the path is

the cardinality of its edge set. A graph G is connected if there

is a path between any pair of its vertices. More generally, a

graph is n-connected if one needs to delete at least n vertices to

disconnect it. In a connected graph, one defines the distance

dðU;VÞ between two vertices U and V as the length of a

shortest path p ¼ UV. A cycle in a graph G is a finite regular

connected subgraph of degree 2. The number of edges is called

the length of the cycle. The sum of two cycles with edge sets E1

and E2 is the subgraph induced by the symmetric difference

E1�E2. The sum of an arbitrary number of cycles is defined by

associativity. A strong ring is a cycle that cannot be written as

the sum of shorter cycles (Goetzke & Klein, 1991).

Let G ¼ ðV; E; iÞ be a graph with V ¼ fV1; . . . ;Vng and

E ¼ fe1; . . . ; emg; the adjacency matrix AðGÞ ¼ ðaijÞn�n of G is

defined by aij ¼ 1 if ViVj 2 E and aij ¼ 0 otherwise. The degree

matrix DðGÞ ¼ ðdijÞn�n is defined by dij ¼ degðViÞ if i ¼ j and

dij ¼ 0 otherwise. Finally, the Laplacian matrix LðGÞ ¼ ðlijÞn�n

is defined as LðGÞ ¼ DðGÞ � AðGÞ. These definitions are

trivially extended to infinite graphs with countable elements.

In a graph G ¼ ðV; E; iÞ, an orientation is given to an edge e

when one of its incident vertices is chosen as an initial vertex

[see Gross & Tucker (2001) or Godsil & Royle (2004)]. Each

edge has thus two possible orientations; if A is chosen as the

initial vertex for the edge e such that iðeÞ ¼ fA;Bg, we write

eþ ¼ AB and e� ¼ BA. The graph is oriented when every edge

e has been given a positive and a negative orientation, eþ and

e�, respectively. We emphasize that oriented graphs are not to

be confused with directed graphs. Arcs in directed graphs are

one-way while edges in oriented graphs are two-way; the

notation keeps track of the chosen way. The case of loops may

be dealt with in a similar fashion (see Eon, 2011). There is

generally no need to attribute an orientation to periodic nets.

It is, however, necessary to give an orientation to their

quotient graphs, as explained further on. An orientation of the

net is then induced by that of its quotient.

An automorphism f of a graph G ¼ ðV; E; iÞ is a permuta-

tion of vertices and edges that preserves incidence relations,

and can be formally defined as a pair f ¼ ðfV; fEÞ of bijective

mappings of V and E on themselves respecting the incidence

mapping: fEðeÞ ¼ fVðAÞfVðBÞ for e ¼ AB. Notice that intro-

ducing the edge mapping fE is necessary to work on graphs

with loops or multiple edges, as are quotient graphs of

periodic nets. f is a bounded automorphism if the set of

distances fd½ f ðUÞ;U�jU 2 VðGÞg is uniformly bounded by

some constant. [Bounded automorphisms were first

mentioned by Trofimov (1983) and rediscovered by Eon

(2005), where they were called local automorphisms.] For

example, the image �IðVÞ of a vertex V by every auto-

morphism �I of the periodic graph in Fig. 1, as defined above,

is at a distance at most one of V. An automorphism f is said to

act freely on G if there is no fixed element, that is: f ðXÞ 6¼ X

for all X 2 V [ E. The automorphism group of G is denoted

AutðGÞ; the subset BðGÞ of bounded automorphisms is a

normal subgroup of AutðGÞ.

A simple graph is a graph without loops or multiple edges.

A net is a locally finite simple 3-connected graph. A p-periodic

net is defined as a pair ðN;TÞ composed of a net N and a free

abelian group T � AutðNÞ of rank p, such that the number of

vertex and edge orbits by T in N is finite. T is called the

translation group of ðN;TÞ and acts freely on the net N. In

some examples we shall also consider periodic graphs, using a

locally finite simple graph instead of a net. Those p-periodic

nets whose full automorphism group is isomorphic to some

p-dimensional space group are called crystallographic nets

(Klee, 2004). Periodic nets whose automorphism group is not

isomorphic to any isometry group in the Euclidean space are

called non-crystallographic nets. Note that the only bounded

automorphisms in crystallographic nets are translations:

BðN;TÞ ¼ T (Eon, 2005). If ðN;TÞ is a periodic net, V=T and

E=T are, respectively, the sets of vertex and edge lattices (or

orbits) of N by T. The mapping qT sends an element X to its

lattice ½X�. The quotient graph is the graph N=T �

ðV=T; E=T; iTÞ, where iT is given by iTð½e�Þ ¼ ð½A�; ½B�Þ for an

edge e ¼ AB 2 E. In the labelled quotient graph the edges of

this graph are assigned a vector label (also called voltage)

indicating the difference between the unit cells of its two end

vertices. This clearly presupposes that the quotient graph has

been given an orientation. By convention, edges with zero

voltage are not labelled.

4. Imprimitivity in periodic nets

Let G be a finite or infinite graph and � � AutðGÞ. G is said to

be �-transitive if, given any two vertices U and V in VðGÞ, one

can always find an automorphism g 2 � such that V ¼ gðUÞ.

In a �-transitive graph G, a partition of the vertex set VðGÞ

into subsets, called blocks, is said to be a system of imprimi-

tivity for � if � preserves the partition, i.e. if any auto-

morphism g 2 � maps the block � to a block gð�Þ
(Bhattacharjee et al., 1998). If the blocks consist solely of

single vertices, or if the whole vertex set is a block, the system

of imprimitivity is said to be trivial. If all the systems of

imprimitivity of a group � are trivial, then the action of � is

primitive. Notice that a system of imprimitivity is completely

described by providing a single block.

For the analysis of periodic nets ðN;TÞ, we shall consider

the subgroup � ¼ BðNÞ of all bounded automorphisms.

Observe, however, that p-periodic nets are imprimitive for

translation groups. For instance, in the case of the square net

we may take as a block the infinite subset � ¼ ftnðOÞjn 2 Zg,

where O is some vertex of the net and t is any non-trivial

translation. On the other hand, the existence of finite blocks of

imprimitivity is not a trivial property for periodic nets. We will

say that the action of BðNÞ on the graph N is finitely primitive

if there is no finite, non-trivial block of imprimitivity.

Periodic nets ðN;TÞ are not generally BðNÞ-transitive;

however, the number of BðNÞ-orbits is finite and the above

definitions may be applied to each orbit separately. In parti-

cular, a system of imprimitivity for the net is completely

described by providing one block per BðNÞ-orbit. The result is

that the action of BðNÞ on a net ðN;TÞ is finitely primitive
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whenever it is so on every BðNÞ-orbit. In this case we use a

different colour for each BðNÞ-orbit, which helps to detach the

blocks of imprimitivity. The graph in Fig. 1, for example, has

two BðNÞ-orbits shown in green and red, respectively. The

action of BðNÞ on the green one is finitely primitive since the

only finite block contains a single vertex; the red orbit admits

the set fB0;C0g as a block of imprimitivity so that the action of

BðNÞ on this subset is not finitely primitive. Note that the

action of BðNÞ ¼ T on a crystallographic net ðN;TÞ is finitely

primitive.

5. Linear representations of periodic nets

A linear representation, or simply a representation � of a graph

in the Euclidean space is a mapping of vertices and edges to

points and line segments, respectively, such that �ðeÞ ¼
�ðUÞ�ðVÞ for e ¼ UV. We may also use the word ‘repre-

sentation’ when referring to the image of the mapping � in the

Euclidean space. A bounded set in the Euclidean space, or

simply a bounded set, is a set whose elements are located

inside a closed ball centred at the origin for a sufficiently large

radius. We will say that the representation � is bounded if �ðNÞ
is a bounded set and that it is line bounded if there is a

maximal length l for the image of every edge: 8e; k�ðeÞk � l.

In a barycentric representation of a graph every point �ðUÞ is

located at the centre of gravity of the points �ðVÞ representing

the neighbours V of U. When not explicitly stated, all vertices

are affected by equal weights. A representation presents vertex

collisions if different vertices are mapped on the same Eucli-

dean point. Note that the whole graph collapses to a single

point in a barycentric representation of a finite graph.

Nevertheless, infinite graphs do display non-trivial bounded

barycentric representations, as shown in Fig. 2 for the infinite

tree derived from the graph K
ð3Þ
2 using as voltages two free

generators.

Bounded and line-bounded barycentric representations of

periodic nets have nice properties.

Lemma 5.1. Let � be a bounded, barycentric representation of

a periodic net ðN;TÞ such that every vertex in some vertex

lattice is mapped onto the same point P; then �ðNÞ ¼ P.

Proof. Suppose that in the barycentric representation � of

ðN;TÞ the vertex lattice ½A� collides at a point P. We consider

an orthogonal projection � of � on some axis containing P;

clearly � is also a bounded, barycentric representation of N.

Suppose � covers an open interval �U;V½. Since the boundary

V is an accumulation point of � we may choose a vertex X1

such that �ðX1Þ is at a distance less than " from V (see Fig. 3).

Observe now that every vertex in the net is at a maximum

(graph-theoretical) distance d from some vertex in ½A�, where

d is the diameter of the quotient graph N=T (the maximum

distance between two vertices in N=T). It is then possible to

choose a shortest path p ¼ X1X2 . . . Xn with Xn 2 ½A� and

n � d. Denote by r the maximum degree of vertices in the net.

Because �ðX1Þ is the barycentre of its neighbours, among

which is �ðX2Þ, this point is at a distance less than r" from the

boundary V. Repeating the procedure shows that �ðXnÞ ¼ P

is at a distance less that rd" from V for any value of ", a

contradiction. If, on the other hand, there is some vertex X

verifying �ðXÞ ¼ V, then all neighbours of X must collide at V

and, by induction, the whole net is mapped on V ¼ P. &

A representation � of a periodic net ðN;TÞ is periodic if

some translation group T	 of rank p in the Euclidean space

may be isomorphically associated to T through a mapping

	 : t 7! t	 such that �½tðUÞ� ¼ t	½�ðUÞ� for any t 2 T and

U 2 VðNÞ. For a labelled quotient graph with voltages in Zp

and a lattice basis Bp of Rp, there is a unique periodic bary-

centric representation of the derived net with the given lattice,

up to translation (Delgado-Friedrichs, 2005).

Consider a representation � of a periodic net ðN;TÞ; since

the vertex set VðNÞ is a countable set, it is possible to define an

infinite sequence V� ¼ ð�ðV1Þ; �ðV2Þ; . . .Þ containing all the

points in �ðNÞ. We call such a sequence a representation vector:

V� is uniquely determined by the representation � and

conversely V� defines a representation of the net. If L is the

Laplacian matrix of a periodic net ðN;TÞ, then the product
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Figure 2
An example of a non-trivial bounded barycentric representation of the
infinite regular tree of degree 3. The tree was built starting at the origin
with a symmetric star, generating three branches. At each step of the
construction two new vertices are added on every branch in order to
complete the neighbourhood of the vertices of degree 1 (the leaves). For
this, similar isosceles triangles with parameter � are drawn such that each
leaf is at the barycentre and its neighbours are at the vertices of one of
these triangles. If 2a represents the length of the terminal edge, the basis
2b of the triangle is given by b ¼ a�. Note that if � ¼ 31=2, then (i) a and b
are constant at every step and (ii) the hexagonal net hxl is obtained.

Figure 3
A finite sequence of points starting at �ðX1Þ, close to an accumulation
point, to P ¼ �ðXnÞ.



LV� is null for a barycentric representation �, since the rows

of this product define exactly the barycentric equations for all

points of �ðNÞ.

Example 5.1. We build the representation vector

ðP1;P2;P3; . . .Þ of the square net according to the spiral order

as shown in Fig. 4. The infinite Laplacian matrix L respecting

the same vertex order is given below. The first row of the

Laplacian matrix, for instance, provides the barycentric

equation for vertex P1: 4P1 ¼ P2 þ P4 þ P6 þ P8.

L ¼

4 1 0 1 0 1 0 1 0 0 0 
 
 


1 4 1 0 0 0 0 0 1 0 1 
 
 


0 1 4 1 0 0 0 0 0 0 0 
 
 


1 0 1 4 1 0 0 0 0 0 0 
 
 


0 0 0 1 4 1 0 0 0 0 0 
 
 


1 0 0 0 1 4 1 0 0 0 0 
 
 


0 0 0 0 0 1 4 1 0 0 0 
 
 


1 0 0 0 0 0 1 4 1 0 0 
 
 


0 1 0 0 0 0 0 1 4 1 0 
 
 


0 0 0 0 0 0 0 0 1 4 1 
 
 


0 1 0 0 0 0 0 0 0 1 4 
 
 


..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

:

We note that, given a periodic net ðN;TÞ and two bary-

centric representations with representation vectors V�1
and

V�2
, the difference vector V�1

� V�2
describes another bary-

centric representation, since the order of the points is

unchanged and LðV�1
� V�2

Þ ¼ LV�1
� LV�2

¼ 0.

The next theorem strengthens previous results obtained by

Delgado-Friedrichs (2005) and Eon (2011).

Theorem 5.1. There is one, and only one, barycentric, line-

bounded representation of a periodic net which maps a given

vertex lattice onto some pre-defined point lattice in Euclidean

space.

Proof. The existence of a periodic barycentric representa-

tion with a given lattice basis is already known. Let �1 and �2

be two (not necessarily periodic) barycentric representations

of ðN;TÞ mapping a given vertex lattice ½X� to some pre-

defined point lattice in Euclidean space. Since both repre-

sentations are barycentric and line-bounded, the difference

vector R ¼ V�1
� V�2

defines a bounded barycentric repre-

sentation of ðN;TÞ which maps the vertex lattice ½X� to the

origin of the space. According to Lemma 5.1, this repre-

sentation collapses to the origin so that V�1
¼ V�2

. &

6. Bounded automorphism groups and systems of
imprimitivity

We consider now non-crystallographic nets for which there is a

non-trivial automorphism fixing a vertex lattice. For example,

in the 1-periodic graph of Fig. 1 vertex lattice ½A� is (pointwise)

fixed by �I. It may be verified that periodic barycentric

representations of this graph display collisions: vertices Bi and

Ci collide for any i 2 N. This result is an immediate conse-

quence of Theorem 5.1.

Corollary 6.1. Suppose there is a non-trivial automorphism f

of a periodic net ðN;TÞ that fixes every vertex in some vertex

lattice ½X�. Then any periodic, barycentric representation of

the net in Euclidean space presents vertex collisions. In

particular, every vertex in (N;T) is mapped on the same point

as its image by f.

Proof. Let � be a periodic, barycentric representation of

ðN;TÞ. Then, the mapping �0: U 7! �½f ðUÞ� is also a bary-

centric representation of ðN;TÞ and it is clearly line-bounded.

Moreover, for any vertex U 2 ½X�, we have �0ðUÞ ¼
�½ f ðUÞ� ¼ �ðUÞ so that both representations map vertex

lattice ½X� to the same point lattice. Hence, according to

Theorem 5.1, �0 ¼ �. Now, since f is not the trivial auto-

morphism, there is some vertex V with f ðVÞ 6¼ V; for this

vertex we have �½ f ðVÞ� ¼ �0ðVÞ ¼ �ðVÞ, showing that V and

its image f ðVÞ collide in the representation �. &

The existence of non-trivial automorphisms fixing one or

more vertex lattices in non-crystallographic nets is not the

rule, but fortunately the result may be extended to periodic

nets which have automorphisms that stabilize finite blocks of

imprimitivity.

Corollary 6.2. Let ðN;TÞ be a periodic net with a non-trivial

system � of finite blocks of imprimitivity for the subgroup

of bounded automorphisms BðNÞ. Denote by BðNÞ� the

subgroup of BðNÞ which stabilizes every block in � and

suppose that BðNÞ� is transitive on each block. Then, any

barycentric representation in Euclidean space of ðN;TÞ

displays vertex collisions, every block being represented by a

single point.

Proof. Notice that � is periodic since T � BðNÞ. Let

us denote by �ðXÞ the block containing vertex X . We

define an auxiliary abstract periodic net N� with vertex

set VðN�Þ ¼ VðNÞ [ � and edge set EðN�Þ ¼ EðNÞ [

fX�ðXÞ;X 2 VðNÞg. So, blocks are abstractly considered as

new elements of the vertex set and linked to their constituting

vertices. It is clear that N� admits T as a translation group,
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Figure 4
A barycentric representation of the square net in the plane. The
representation vector can be defined as the sequence ðP1;P2;P3; . . .Þ,
obeying a spiral pattern.



so that we may consider the periodic net ðN�;TÞ. We now

define g� 2 BðN�Þ by extension of g 2 BðNÞ� as follows. For

every X 2 VðNÞ, we set g�ðXÞ ¼ gðXÞ and g�½�ðXÞ� ¼ �ðXÞ.
According to Corollary 6.1, all vertices in a block collide in a

periodic, barycentric representation of ðN�;TÞ. The added

vertex �ðXÞ, being at the barycentre of vertices mapped on a

single point, is also mapped on this point, which means that

the given periodic, barycentric representation of ðN�;TÞ is

also a periodic, barycentric representation of ðN;TÞ, but

possibly with different weights. The weight of a given block is

indeed equal to the number of edges linking this block to the

central one. &

An example of a barycentric representation with unequal

weights is given in x7.3. It is also worth noting that several non-

equivalent blocks may collapse into a single point of the

barycentric representation, as shown in x7.1.

7. Equivoltage partitions

A vertex partition of a graph into subsets Bi, called cells, is

equitable if the number of neighbours in Bj of a vertex U in Bi

is a constant bij, i.e. it is independent of the chosen vertex U

(Godsil & Royle, 2004). Clearly, orbits by some automorphism

group form an equitable partition. Accordingly, a system of

finite blocks of imprimitivity for the subgroup of bounded

automorphisms forms an equitable partition � of an NC net

whenever their setwise stabilizer is transitive on every block.

Since � is also periodic, this partition projects on an equitable

partition of the quotient graph N=T. Moreover, all edges

linking two given blocks are represented by the same line

segment in a periodic, barycentric representation of the net: it

is thus possible to attribute the same label vector to all the

representative edges in the labelled quotient graph. This

observation leads us to introduce the next concept.

Definition 7.1. A vertex partition of a voltage graph is equi-

voltage if (i) it is equitable and (ii) there is a bijective mapping

between the stars of any two vertices of the same cell, which

respects both voltages and partition. That is: given a cell Bj

and a vertex U 2 Bi, the list of bij voltages of edges UV for

V 2 Bj does not depend on the chosen vertex U. A loop in a

star must be counted as two edges, one outgoing and the other

ingoing, both with the same voltage.

Hence, labelled quotient graphs of non-crystallographic

nets admitting a stable, transitive system of finite blocks of

imprimitivity will present an equivoltage partition of their

vertex set if the origin is suitably chosen in each vertex lattice.

Fig. 5 illustrates the importance of this setting; if the origins of

equivalent vertex lattices are not chosen in the same block of

imprimitivity, then the labelled quotient graph fails to show an

equivoltage partition.

The following examples show that all non-crystallographic

nets that are known so far can be mapped on a labelled

quotient graph with an equivoltage partition. These examples

illustrate different relationships between non-crystallographic

nets and their periodic, barycentric representations inter-

preted through the prism of an equivoltage partition of their

labelled quotient graphs.

The most important property is schematized in Fig. 6. For

the periodic net ðN;TÞ with system of imprimitivity �, we can

construct the quotient N=� whose vertices are the blocks �ðXÞ
for X 2 VðNÞ. Because both nets, N and N=�, admit the same

translation group T, we can also build their labelled quotient

graphs with voltages in T. The diagram may now be completed

by a homomorphism � mapping N=T to its quotient Q by the

equivoltage partition and defined by �ð½X�TÞ ¼ ½�ðXÞ�T ; notice

that � preserves voltages in the sense that it maps edges of

N=T on edges of Q with the same voltage in T. As a conse-

quence, edges in N between vertices in the same block are

mapped onto a loop with zero voltage in Q: such loops must be

deleted. We emphasize that the quotient Q can be obtained

directly from N=T and brings immediate information

concerning the barycentric representation of N with collisions,

as the following example of the double ladder shows.

7.1. The double ladder

Fig. 7 displays the 1-periodic net of the double ladder with

three vertex lattices: ½A�, ½B� and ½C�. There are two non-

equivalent blocks of imprimitivity, namely fA0;C0g and fB0g,

hence according to Corollary 6.2, we expect the collision of

vertex lattices ½A� and ½C� in the barycentric representation. In

fact, the three vertex lattices collide into a single point lattice

½F� because the net N=� itself is a non-crystallographic net

(the ladder) with a stable, transitive system of finite blocks

of imprimitivity, fDi;Eig. Quotient graphs provide a clear

understanding of these facts. The quotient graph of the double
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Figure 5
A 1-periodic graph with a system of finite blocks of imprimitivity and two
labelled quotient graphs: (a) without and (b) with an equivoltage
partition.

Figure 6
Schematic definition of the quotient by an equivoltage partition of the
quotient graph of a periodic net.



ladder presents an equivoltage partition with two cells, fA;Cg

and fBg; the respective quotient Q is precisely the labelled

quotient graph of the (simple) ladder. In turn this also

presents an equivoltage partition with a single cell fD;Eg

whose quotient is a loop.

7.2. The NC nets uld and uld-z

Fig. 8 shows the labelled quotient graphs of the two cubic

sphere packings initially classified as 4=3=c25 and 4=3=c26 by

Fischer (1974) and today codified as uld and uld-z in the

Reticular Chemistry Structure Resource (RCSR) database of

crystal nets (O’Keeffe et al., 2008).

We first observe that both labelled quotient graphs present

the same automorphism ’ ¼
Q

k¼1;...;12ðU2k�1;U2kÞ, acting as a

mirror on each trigonal prism. In both cases, ’ preserves

voltages on the cycles of the graph and fixes the edges of the

prisms, indicating the existence in the net of a bounded

automorphism, say � ¼
Q

t2T;k¼1;...;12ðtU2k�1; tU2kÞ, which

commutes with the respective translation groups. Hence, both

nets are non-crystallographic nets and, as such, they have

more than one maximal translation group. Let us write as i, j

and k the three generators of the translation group of uld; the

three automorphisms i�, j� and k� form the generators of an

isomorphic translation group for this net. It may be verified

that the labelled quotient graph of uld relative to this new

translation group is isomorphic to that of uld-z. Hence, uld and

uld-z are isomorphic nets but with a different periodic struc-

ture. This explains why all topological invariants of uld and

uld-z are identical, although they display non-ambiently

isotopic embeddings. The partition � ¼ fftU2k�1; tU2kg : t 2 T; k ¼ 1; . . . ; 12g

forms a system of finite blocks of imprimitivity for each net

which is setwise stabilized by the transitive subgroup

BðNÞ� ¼ f1; �g. Accordingly, both labelled quotient graphs

display an equivoltage partition formed by the edges of the

trigonal prisms; the quotient is given in Fig. 8 as the red

subgraph of the quotient of uld-z. This is isomorphic to the

labelled quotient graph of srs-a, the crystallographic net

obtained from srs by decoration. It was verified that the three

nets uld, uld-z and srs-a have the same periodic barycentric

representation where, in agreement with Corollary 6.2, all the

edges of the trigonal prisms collapse.

7.3. A double hxl

It is worth illustrating the existence of unequal weights in

the periodic, barycentric representations of the nets ðN�;TÞ

and ðN;TÞ (in the notations of the proof of Corollary 6.2).

To this end, Fig. 9 shows a non-crystallographic net obtained

by duplication of hxl and its labelled quotient graph with

an equivoltage partition, the quotient by this partition being

K
ð3Þ
2 , as expected. Every block of imprimitivity contains two

vertices; these may be exchanged by bounded automorphisms

which act as a kind of local reflection on the net. Now, every

block is linked by double edges to two other blocks while it is

linked by a quadruple edge to the third block. As a result, the

three edges have weights 1, 1 and 2, respectively, in the peri-
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Figure 7
From (top) the double ladder with two non-equivalent finite blocks of
imprimitivity shown in green and red and its quotient graph to (bottom)
its barycentric representation (the infinite path).

Figure 8
The labelled quotient graphs of (top) uld-z and (bottom) uld
with the equivoltage partition � ¼ ffU1;U2g; fU3;U4g; . . . ; fU23;U24gg.
The quotient by � drawn as the red subgraph of the quotient of uld-z is
isomorphic to the labelled quotient graph of the crystallographic net
srs-a.



odic barycentric representation of the quotient N=�, as shown

in Fig. 10.

7.4. A triple sqr

In the last example of this section, we consider the non-

crystallographic net shown in Fig. 11, already studied in detail

by Moreira de Oliveira Jr & Eon (2011). In contrast with the

double ladder and uld or uld-z, the subgroup of bounded

automorphisms of this net acts freely on the net. However, we

will see that this net also presents a system of finite blocks of

imprimitivity: � ¼ ffAij;Bij;Cijg; fDij;Eij;Fijg : i; j 2 Zg.

It was shown in the above-mentioned paper that the group

of bounded automorphisms of the net is a subdirect product

of S3 and Z
2 with generators ð12; ð0; 1ÞÞ and ð123; ð1; 0ÞÞ.

Moreover, because this group is transitive and acts freely on

the net, any vertex can be indexed by the automorphism that

takes the origin to it, providing the following correspondence,

where e is the identity permutation in S3.

Aij ! ðe; ði; 2jÞÞ

Bij ! ð123; ði; 2jÞÞ

Cij ! ð132; ði; 2jÞÞ

Dij ! ð12; ði; 2j� 1ÞÞ

Eij ! ð23; ði; 2j� 1ÞÞ

Fij ! ð13; ði; 2j� 1ÞÞ:

8>>>>>><
>>>>>>:

The representative automorphisms of the first family of

blocks �ij ¼ fAij;Bij;Cijg have even permutations as first

coordinates, while in the other family, �0ij ¼ fDij;Eij;Fijg, they

admit odd permutations as first coordinates. To check that � is

a system of imprimitivity, we observe that the action of an

arbitrary bounded automorphism ðp; tÞ on a block, that is, the

result by left multiplication of the three representative auto-

morphisms by ðp; tÞ, only depends on the parity of the

permutation p. An even permutation p stabilizes the two

families while an odd permutation exchanges them. On the

other hand, the second (translational) coordinates being

identical for the three vertices in a block remains so after

multiplication by ðp; tÞ. Hence any bounded automorphism

maps a block to another block; in particular the subgroup of

order three generated by ð123; ð0; 0ÞÞ transitively stabilizes

every block.

As expected, the labelled quotient graph presents an

equivoltage partition with three vertices per cell. The

respective quotient by this partition is the graph K
ð2Þ
2 with a

loop at each vertex, from which one may derive the net sqr

with double cell. In agreement with Corollary 6.2, the periodic

barycentric representation of the NC net displays collisions.

Because there are only triple edges between two linked blocks

of imprimitivity, it is isomorphic to the barycentric repre-

sentation of sqr.

It is worth noting that the labelled quotient graph of the net

presents an automorphism, say ’1, in which both the internal

and external 3-cycles slide along themselves, and which

preserves the voltages over its cycles. The quotient by ’1 and

the quotient by the equivoltage partition are isomorphic. It is

not possible, however, to attribute voltages in Z2 to the loops

of the quotient by the automorphism, since this voltage, say �,

should verify �3 ¼ 30 with � 6¼ 10. We emphasize that the

quotient by an equivoltage partition does not describe the net,

but a net associated to its barycentric representation. That the

respective net is isomorphic to the square net with double cell

is implied by the existence of the automorphism ’3, exchan-

Acta Cryst. (2013). A69, 276–288 Moreira de Oliveira Jr and Eon � Non-crystallographic nets 283

research papers

Figure 10
A periodic, barycentric representation of the ‘double’ hxl; the vertical
(shorter) edge has weight 2.

Figure 9
A periodic net with a system of imprimitivity, its labelled quotient graph
and the quotient by an equivoltage partition.

Figure 11
An NC net with a system of imprimitivity, but with a freely acting
bounded automorphism group, its labelled quotient graph and different
quotients. � indicates the quotient by an equivoltage partition, ’ the
quotient by an automorphism group.



ging the two vertices and mapping cycles to cycles with the

same voltages. Moreover, equivoltage partitions may exist

even in the absence of an automorphism of the labelled

quotient graph, as may also be seen on this same example.

There is indeed another automorphism of the labelled

quotient graph of the net, say ’2, which exchanges the internal

and external 3-cycles and preserves voltages over every cycle.

This quotient by ’2 may be labelled, as shown in Fig. 11, and

is indeed the labelled quotient graph of the net associated to

a maximal translation group. This graph admits no auto-

morphism that preserves voltages over its cycles, but there is

an equivoltage partition; the three vertices belong to the same

cell and the quotient by this partition is the bouquet B2 with

voltages 10 and 01.

7.5. A periodic net based on the Frucht graph

Before leaving this section, we want to call the attention of

the reader to the fact that the existence of an equivoltage

partition in a labelled quotient graph is not enough to ensure

that the derived net is non-crystallographic. Fig. 12 shows a

labelled quotient graph constructed from the Frucht graph

(Frucht, 1939). This graph is the smallest cubic graph on

twelve vertices with trivial automorphism group; it is drawn in

black in the figure and the respective edges were attributed

voltage 000. For each of the three voltages 100, 010 and 001

were added twelve edges in such a way that at every vertex

one edge of each voltage comes in and another goes out. The

resulting labelled quotient graph is thus regular of degree 9

and admits an equivoltage partition with a single cell. The

quotient by this partition is the bouquet of three loops with

voltages 100, 010 and 001; accordingly, the barycentric repre-

sentation of the derived net is isomorphic to that of pcu, as we

have indeed checked.

Through every vertex of the labelled quotient graph run

exactly three cycles of voltages p00, 0q0 and 00r, respectively,

where p, q and r are the lengths of the respective cycles. This

means that each of these cycles is the projection of a strong

geodesic line of the derived periodic net (Eon, 2007). More-

over, every edge of non-zero voltage belongs to exactly one of

these cycles. These properties may be lifted to the derived

periodic net. The edges with zero voltage induce in every unit

cell of the net a Frucht graph; coloured edges lift to strong

geodesic lines which join the unit ‘Frucht cells’ in the three

directions 100, 010 and 001. Since bounded automorphisms

map strong geodesic lines to strong geodesic lines in the same

direction, the unit Frucht cells should map on themselves. Of

course, a Frucht graph can only map identically on another

Frucht graph, and because there is exactly one strong geodesic

line through each vertex of the net in each of the three

directions, any bounded automorphism must be a translation,

hence the derived net is a crystallographic net. We conclude

that the existence of a non-trivial system of finite blocks of

imprimitivity is linked to that of non-trivial automorphisms in

the subgraph induced by the block.

8. Correlation groups

It is known that groups with an imprimitive action can be

embedded in a wreath product (see for instance, Bhattacharjee

et al., 1998). Before we give a more formal introduction to this

purely group-theoretical concept, we analyse a simple appli-

cation to the study of NC nets.

Fig. 13 shows a 1-periodic graph with a system of finite

blocks of imprimitivity �i ¼ fAi;Big. This graph admits as

bounded automorphism any combination of exchanges

�I ¼
Q

i2IðAi;BiÞ, where I is any finite or infinite subset of

integers. Notice that for each block �i the two vertices may be

permuted or left invariant hence, relative to a given block, �I

acts as a permutation of the symmetric group S2. This auto-

morphism can then be written as a mapping f : Z! S2 which

attributes to every block �i the respective permutation. An

arbitrary bounded automorphism is the combination of such

�I with a translation t and can be written as ðt; f Þ where t 2 Z

and f 2 ðS2Þ
Z are any translation in Z and any mapping from

Z to S2, respectively. The multiplication law is given by

ðt2; f2Þðt1; f1Þ ¼ ðt2 þ t1; f
�t1
2 f1Þ;

f�tðnÞ ¼ f ðnþ tÞ:

�
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Figure 12
A labelled quotient graph based on the Frucht graph (in black); the
colour of an edge symbolizes the respective voltage.

Figure 13
An NC transitive net with a system of imprimitivity and its labelled
quotient graph.



Note that ðS2Þ
Z is provided a group structure with the

pointwise product ðfgÞðnÞ ¼ f ðnÞgðnÞ 2 S2. The new group is

called the wreath product of Z by S2 and is in fact the semi-

direct product of Z and ðS2Þ
Z; this group is denoted Z Wr S2.

Although the definition of the wreath product shows no

such restriction, we will only need the products Zp Wr Sn to

embed the group of bounded automorphisms of a transitive

p-periodic net admitting a system of blocks of imprimitivity

with n vertices per block. In this case, the formal definition is

as above: the elements of the wreath product are written ðt; f Þ

where t 2 Zp and f 2 ðSnÞ
Z

p

are any translation in Zp and any

mapping from Z
p to Sn, respectively. The multiplication law is

given by the same formula as above.

However, not every periodic net is transitive. In this case,

one has to consider separately the action of bounded auto-

morphisms on each orbit, generating the respective embed-

ding in some wreath product and then construct the whole

group as a subdirect product of these wreath products. Some

periodic graphs are easily dealt with; the periodic graph in Fig.

1, for instance, presents two kinds of blocks of imprimitivity

but mappings from Z to S1 associated to the blocks fAig are

trivial, so that the group of bounded automorphisms is

isomorphic to the wreath product Z Wr S2 describing the

behaviour of the only blocks fBi;Cig. Other groups are

surprisingly much simpler; only three mappings f 2 ðS3Þ
Z

2

are

needed to describe the group of bounded automorphisms of

the triple hxl. These mappings are called constant mappings

and take any translation in Z2 to a given permutation in the

group generated by the 3-cycle ð1; 2; 3Þ. In order to understand

the origin of this diversity of groups of bounded automorph-

isms, we introduce the concept of correlation groups, which are

built from the quotient Q of the labelled quotient graph N=T

by the equivoltage partition.

A whole family of correlation groups �e
t for t 2 T is asso-

ciated to every edge e of Q as follows. Let e ¼ UV be an edge

of Q with voltage r; U and V represent two – not necessarily

different – cells of the equivoltage partition in N=T which are

linked by all the edges in the pre-image of e with the same

voltage r. Lifting up these cells to the periodic net, we have

two blocks of imprimitivity, say Ut and Vtþr, for every t 2 T

which are linked by edges in the pre-image of e. We consider

then the subgraph of N induced by the union of the vertices in

the blocks Ut and Vtþr, that is, the edge set contains all edges in

the pre-image of e as well as in the pre-images of the edges

with zero voltage inside cells U and V, respectively. The latter

clearly link vertices within the same block Ut or Vtþr. Among

the automorphisms of this graph, we consider only those that

stabilize the two blocks, forming the correlation group �e
t , and

write them as ðpU; pVÞ, since they can be embedded in the

direct product of the two automorphisms groups �U and �V of

the graphs obtained from the cells U and V in N=T by

inclusion of edges with zero voltage. We consider now three

applications of correlation groups.

8.1. A triple hxl

Fig. 14 shows a triple hxl, another NC net already described

by Moreira de Oliveira Jr & Eon (2011). By construction, the

group of bounded automorphisms acts freely on the net. The

labelled quotient graph displays an equivoltage partition

whose quotient Q is isomorphic to K
ð3Þ
2 .

Because the quotient Q has three edges, there are three

families of correlation groups. We obtain the correlation

groups associated to the edge with voltage 10 by deleting in

N=T all the edges with voltages 01 and 00, since the latter link

vertices in different cells of the partition, and by taking then

the automorphisms which preserve the two cells. In this case,

the induced subgraph in the periodic net contains the three

edges AtBtþ10, CtDtþ10 and EtFtþ10, hence for every permuta-

tion in the vertex subset fAt;Ct;Etg there is exactly one

permutation in the vertex subset fBtþ10;Dtþ10;Ftþ10g. Since

the two permutation groups SfAt;Ct;Etg
and SfBtþ10;Dtþ10;Ftþ10g

are

isomorphic, the correlation group is the diagonal subgroup of

SfAt;Ct;Etg
� SfBtþ10;Dtþ10;Ftþ10g

containing only permutations

ðp; �:p:��1Þ for any p 2 SfAt;Ct;Etg
where � is the mapping

induced by the edges:

�ðAtÞ ¼ Btþ10

�ðCtÞ ¼ Dtþ10

�ðEtÞ ¼ Ftþ10:

8<
:

The same argument is valid for the other two edges of Q,

from which we conclude that there is a strong correlation

between possible permutations within linked blocks of

imprimitivity. Indeed, if the vertex set is permuted in any

block by p, the same permutation, up to the respective

isomorphism, must occur in every block. This sets to six an

upper bound for the order of the stabilizing subgroup BðNÞ�.
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Figure 14
Pseudo-hexagonal representation of the triple hxl, an NC net with a
system of imprimitivity admitting a freely acting group of bounded
automorphisms, its labelled quotient graph and the quotient by an
equivoltage partition.



It is, however, necessary to check for the consistency of

these correlations in the whole net. Given an initial permu-

tation in some block, the permutation induced in any block

should not depend on the path chosen to reach it. Equiva-

lently, correlations should be consistent over strong rings in

the net associated to the barycentric representation. In this

case, p is the permutation in the block chosen as the origin of

the ring and is induced by the sequence of edges along this

ring, that is, we correlate the permutation in a block to itself

through the equation p ¼ �:p:��1. For the triple hxl, the only

strong ring is lifted from the 6-cycle in Q running successively

across the edges with voltages 10, 01, 00, 10, 01 and 00. It may

be verified that the corresponding mapping is given by

�ðAtÞ ¼ Et

�ðEtÞ ¼ Ct

�ðCtÞ ¼ At

8<
:

and the only permutations that are self-conjugate by � are

those in the cyclic group generated by the permutation

ðAt;Et;CtÞ.

8.2. Linear graphs with no correlations

The 1-periodic graph shown in Fig. 5 presents two kinds of

blocks of imprimitivity containing 1 and 2 vertices, respec-

tively; the 1-periodic graph in Fig. 13 has a single kind of block

with 2 vertices. The subgraphs induced in the periodic graphs

by an edge in their quotient Q (a single loop with voltage 1)

are, respectively, isomorphic to K1;2 and K2;2, and the asso-

ciated correlation groups are isomorphic to the full direct

products S1 � S2 and S2 � S2, respectively, indicating the

absence of correlations: blocks are completely independent of

their neighbours and the groups of bounded automorphisms

are isomorphic to wreath products.

8.3. The double hxl

The examples in the two previous paragraphs correspond to

extreme situations. An intermediate case is provided by the

double hxl. There are two blocks of imprimitivity, one with the

edge BC, the other with two independent vertices A and D.

There are also two non-isomorphic subgraphs induced in the

periodic net by an edge in the quotient Q. The subgraphs

induced by the edges with voltages 00 and 01 contain two

independent edges, namely AC and BD, whereas that induced

by the edge with voltage 10 contains K2;2. Hence there are

strong correlations for the former and no correlations for the

latter. As a result, a permutation in any block will necessarily

propagate along the direction 01. In this case, the group of

bounded automorphisms is given by the semidirect product of

Z
2 and ðS2Þ

Z.

9. Algorithm

The previous considerations lead us to propose an algorithm

to analyse the nature of the subgroup BðNÞ�, and from it the

bounded automorphism group BðNÞ, directly from the

labelled quotient graph N=T. This algorithm should be

applied when there is some suspicion that a periodic net might

be non-crystallographic, for instance when the Systre program

(Delgado-Friedrichs & O’Keeffe, 2003) crashes.

(a) Given a periodic net N defined through a labelled

quotient graph, one should determine its barycentric embed-

ding using the cycle–cocycle matrix method (Eon, 2011).

(b) If necessary, a common origin should be chosen for all

colliding vertex lattices and the labelled quotient graph N=T

redrawn, showing an equivoltage partition.

(c) Correlation groups should then be analysed for every

edge in the quotient Q of N=T by the equivoltage partition,

leading to the structure of the group of bounded auto-

morphisms.

10. Application: three orthorhombic sphere packings

In a recent paper, Sowa (2012) listed newly found sphere

packings with orthorhombic symmetry. Among the associated

periodic nets, three display collisions and cannot be studied by

Systre; these are 4=4=o18, 4=4=o19 and 5=3=o6. We look in

thorough detail at the second one.

10.1. 4/4/o19

Fig. 15 displays the labelled quotient graph of the periodic

net associated to sphere packing 4=4=o19, as extracted by the

program TOPOS (Blatov, 2006) from Sowa’s data. On

applying the cycle–cocycle matrix method to get a barycentric

embedding of this net, it is verified that vertex lattices collide

by pairs: fA;Cg, fB;Dg, fE;Gg and fF;Hg. Two vertices in the

same pair have been marked with the same colour on the right

quotient in this figure, one as an open circle and the other as a

full disc. Changes of the origin in the different vertex lattices

are necessary to get a common origin for vertices in the same

block and yield the labelled quotient graph as displayed. This
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Figure 15
(Top left) the labelled quotient graph of 4=4=o19 (see text), (top right)
the labelled quotient graph obtained after changes of origin in vertex
lattices evidencing an equivoltage partition and (bottom) the respective
quotient.



graph clearly has an equivoltage partition with quotient given

in the lower part of the figure. This quotient is known as the

quotient graph of the minimal net ths (Beukemann & Klee,

1992), which allows the representation of the net as a double

ths, as shown in Fig. 16.

As in the case of the double hxl, there are two non-

isomorphic subgraphs induced in the periodic net by an edge

in the quotient Q. The subgraphs induced by the double edges

contain two independent edges, whereas those induced by the

two simple edges contain K2;2. Hence there are strong corre-

lations for the former and no correlations for the latter. Thus

permutations of two vertices in a block should only propagate

along the 1-periodic subgraph running in the direction asso-

ciated with the respective double edge in Q. Since permuta-

tions in the orthogonal directions associated with the two

double edges in Q behave independently, the group of

bounded automorphisms is isomorphic to the semidirect

product of Z3 and ðS2Þ
Z

2

� ðS2Þ
Z

2

, which can be embedded in

the wreath product Z3 Wr ðS2 � S2Þ.

10.2. 4/4/o18 and 5/3/o6

The analysis of these two nets is similar to the previous one,

so that we only present the respective quotient graphs in

Fig. 17. The two labelled quotient graphs display an equivol-

tage partition with two vertices per cell and, strikingly, the

quotient by this partition is again isomorphic to the quotient

graph of ths, hence the two nets may also be drawn as a

double ths. It appears, however, that all correlations are strong

in the case of 4=4=o18 so that the stabilizing subgroup BðNÞ�
is isomorphic to S2 and the group of bounded automorphisms

is isomorphic to the direct product Z3
� S2. The case of

5=3=o6 is identical to that of 4=4=o19 with the small difference

that vertices in the same block are linked one to the other.

Hence, the three sphere packings are associated to non-

crystallographic nets.

11. Final considerations

Non-crystallographic nets are still relatively unknown, but all

the examples the authors are aware of display finite blocks of

imprimitivity for the subgroup of bounded automorphisms. It

should be remembered that some crystallographic nets do

display vertex collisions. In this case, it is expected that the

labelled quotient graph will have no equivoltage partition

after the first step of the algorithm, or when it does, that

correlation groups are trivially reduced to the identity, as was

seen in the case of the net derived from the Frucht graph.

J.-G. Eon thanks CNPq, Conselho Nacional de Desenvol-

vimento e Pesquisa of Brazil, for support during the

preparation of this work.
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